URB@Exp

The URB@Exp project develops guidelines concerning types of problems for which urban labs are most suited, how urban labs can best be organized, and how they can be integrated into urban governance systems.

First results show that urban labs offer critical space for experimenting with new forms of collaborative governance. Their hybrid position at the boundaries of local administration, research and society proves beneficial for activating and facilitating urban stakeholders. However, their integration into the system of urban governance highly depends on their capacity to break administrative silo-formation and anchor themselves across various departments. These insights are translated into a prototype inspiration kit for urban lab practitioners.

Aim/objective

To develop guidelines for urban labs, URB@Exp determines:

1. types of problems most suited to deal with in urban labs
2. ‘good practices’ of implementing urban labs
3. effective approaches to integration of urban labs with local government structures

Approaches/methods

- Transdisciplinary action research
- Transitioning experiments
- Agonistic participatory design
- Logical levels
- Intensive social learning with multiple stakeholders
- City exchange on good practices and dilemmas

Expected results and impacts

- Reflexive guidelines for urban labs
- Inspiration kit for future urban lab practitioners
- A robust framework for new forms of urban governance
- Dissemination to potential users

Involved cities/project examples

- Antwerpen (Stadslab 2050)
- Graz (Governance Lab Graz)
- Leoben (City Lab Leoben)
- Maastricht (Maastricht-LAB)
- Malmö (Malmö Living Labs)

About JPI Urban Europe

JPI Urban Europe is a transnational research and innovation programme on urban transition. With the ambition to develop and validate new solutions for sustainable and liveable cities, a cooperation platform and programme is provided to connect urban stakeholders, researchers, cities, business and society.

www.js-urbanexp.eu @jpiurbaneurope

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 693443