
Annex 1 March 2022

D3.2 Visual concept for presentation of results of PED assessment

Content

Part 1

- Document purpose
- How to use this presentation
- Introduction to 4 communication stages

Part 2

- PED Introduction (level 1)
- Detailed process (level 2)
- Consultation maps (level 3)
- Scenarios (level 4)

Document purpose

 Supporting presentation on the D3.2 Visual concept for presentation of results of PED assessment

Visual concept goals

Points out the appropriate visual concept approach and defines the essential elements that need to be communicated with stakeholders

(Visualization of main points to be communicated from D3.1 Holistic assessment method)

- 1. Clear and understandable introduction of the PED topic
- 2. Effective communication on the PED aspects to a general audience and stakeholders
 - PED benefits, challenges & barriers, cooperation requirements (data gathering, consultations)
- 3. Increasing stakeholder engagement in PED topic
- 4. Presentation of PED design steps and resulting scenarios

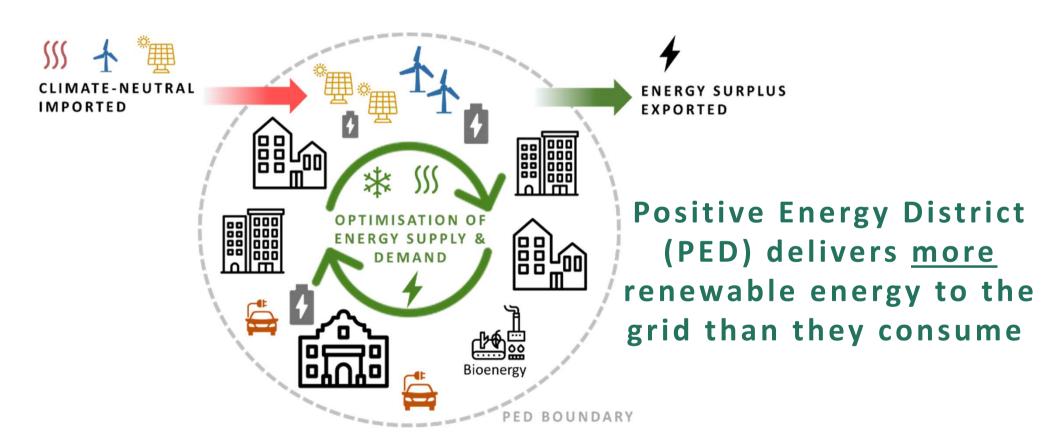
Final yes/no decision on the PED implementation

How to use this presentation

Goal of this presentation is to

point out the essential (minimal) elements of the visual concept, which should be communicated with stakeholders

- 1. All steps of the visual concept are described in detail in the D3.2 main document.
- 2. Part 1 of this presentation serves to acquaint the consultant with the elements of the visual concept, it is not intended for presentation to stakeholders.
 - Opening/Closing part is the same case, however, we would appreciate giving credits to PED-ID project ©
- 3. Use the slides from Part 2 as a background/example for your presentation.
 - o auxiliary / explanatory texts or slides in italics can be removed
- 4. This presentation shows the content as well as a potential visual approach to it that should be communicated with the stakeholder. Get inspired by it.
- 5. Feel free to expand the content if it's appropriate for your PED and your stakeholders.
- 6. Edit content, which is specific to your PED (i.e. maps, specific data, area specifics).


Stakeholder communication is a key aspect!

• communicating the features of PED inception consists of 4 important communication stages:

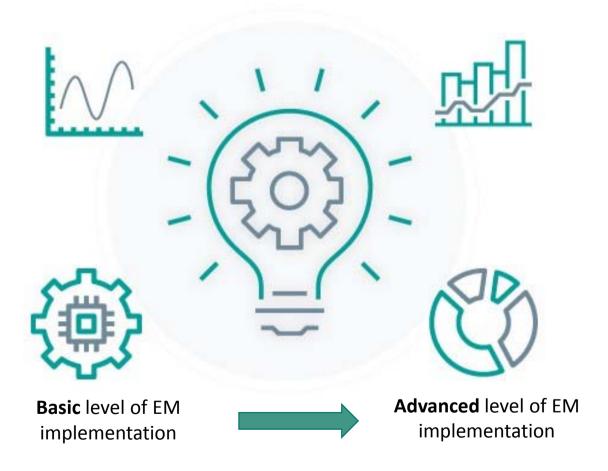
No.	Title	Content	Stakeholder engagement
1	PED Introduction	PED definition, basic info on benefits, PED	Initial contact with stakeholder, spark
		development and next steps	interest in PED, nudge to PED inception
2	Detailed process	Detailed info on PED development, required	Stakeholder learns about his/her
		data, calculation methods, making of scenarios	commitment and requirements on data
			provision and the way the data would be
			processed
3	Consultation maps	Comprehensible presentation of prospective	Stakeholder learns about the current state
		area based on the gathered data and spatial	and opportunities of prospective area and
		analysis, ideally in an interactive map	gives feedback on additional requirements
		application	and conditions
4	Scenarios	Presentation of feasible scenarios based on the	Stakeholder learns about possible
		area' features (from #2) and additional	scenarios to implement PED and issues the
		requirements (from #3).	final decision

Level 1: PED Introduction

What is a PED?

Group of buildings or **urban area**

- Defining the area
- Minimum 3 buildings in respect of positive energy blocks (PEBs)


High degree of system and communication integration

• Requires **interconnection** and **interaction** of several sectors (private buildings, public buildings, transport and mobility, infrastructure,...)

Energy management

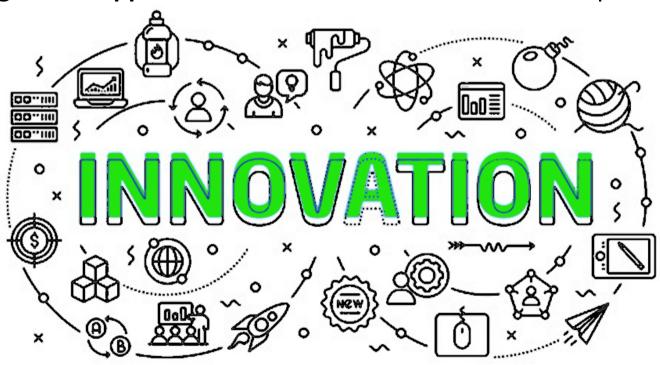
- A shift from the basic level of EM implementation to the advanced level of EM implementation
- Utilization of the energy flexibility concept and demand-response principle

Energy efficient buildings

- Plus energy standard
- Zero energy standard
- Passive energy standard

Local RES and energy storage

- PEDs rely exclusively on the (local) renewable energy sources and energy storage systems
- PEDs should achieve energy surplus


Net-zero energy import and GHG emissions

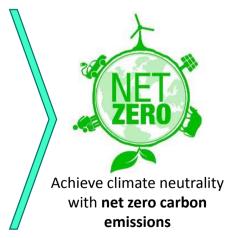
- PEDs represent path to the (local) carbon neutrality
- PEDs strive for zero GHG emissions balance

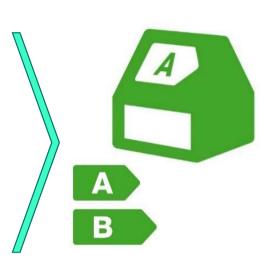
Innovative social, technology, material or technical solutions

• PEDs are not limited by the chosen solutions. Modern and innovative technologies and approaches will be essential for the PED implementation

Learn more about how PEDs work here https://youtu.be/jCu98jq-62U

If it is technically possible, play an information video about PED





Group of buildings or **urban area** that produces

more renewable energy than it consumes: Using exclusively local renewable sources and energy storage systems to achieve energy surplus,

adopting plus energy standards & energy efficient buildings,

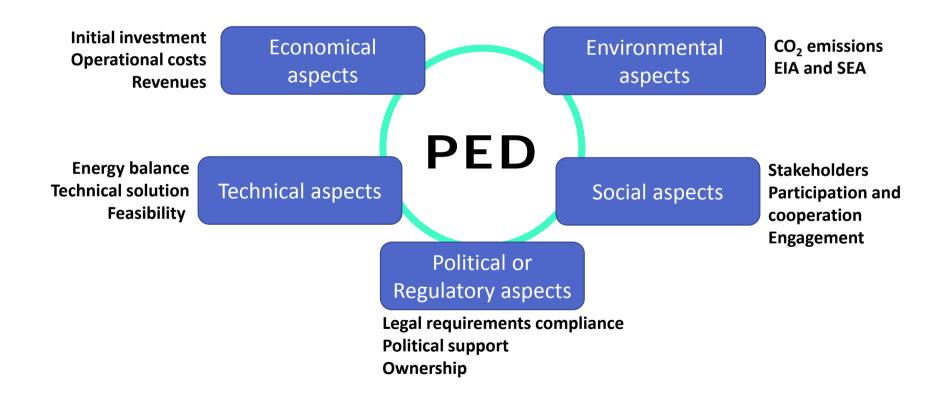
and **energy management** strategies to **lower energy demand.**

Innovative social, technology, material or technical **solutions**

PED achieves

- ✓Acceleration towards carbon neutrality
- ✓Acceleration of the energy-system transformation
- √Improved quality of life
- ✓Improved local climate & life quality
- ✓ Reduction of energy poverty
- ✓Increasing energy resilience of the community

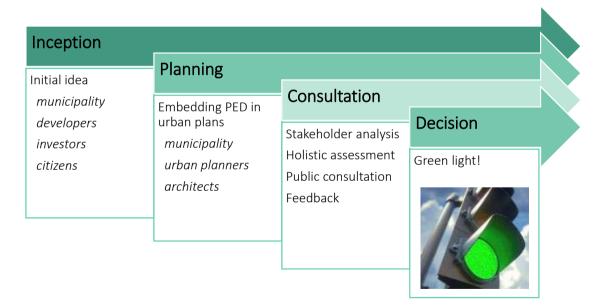
Level 2: Detailed scenario


Detailed scenario

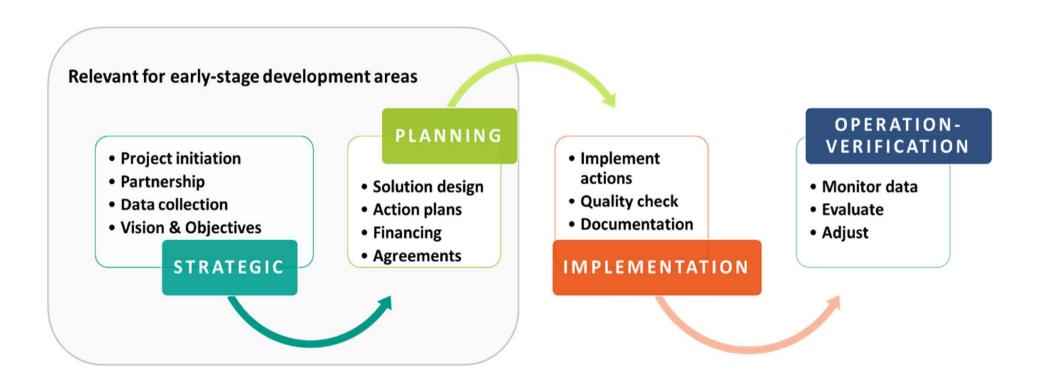
Level 2 (Detailed process) is divided into two interconnected parts:

- First part aims to explain in greater detail the structure and mechanics of the analysis to be performed and further steps in developing PED scenarios
- Second part aims to gather and process the data about the prospective PED area. Stakeholders cooperation is needed.

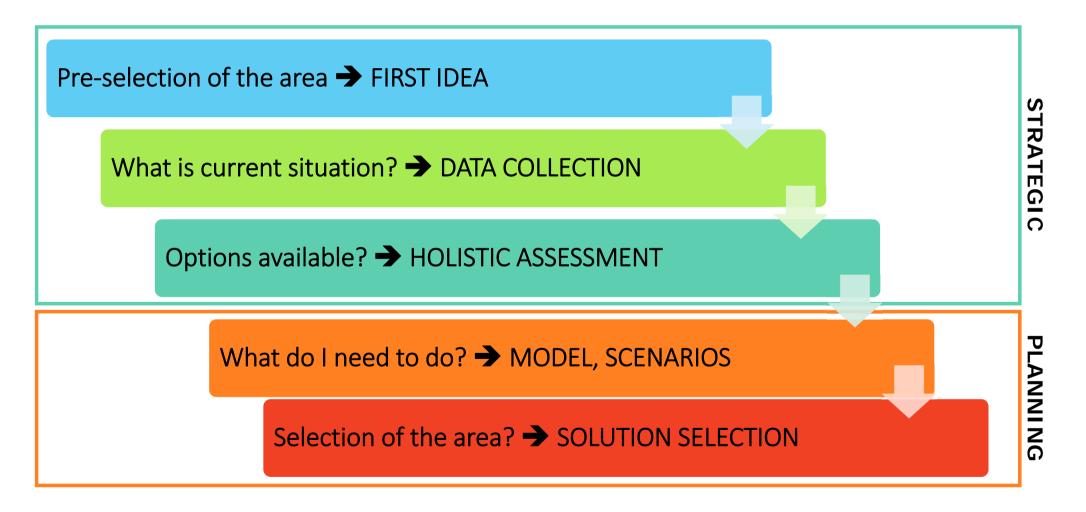
Aspects of a PED:


At each project phase, different aspects will guide the decision+-making & development:

How to implement a PED?

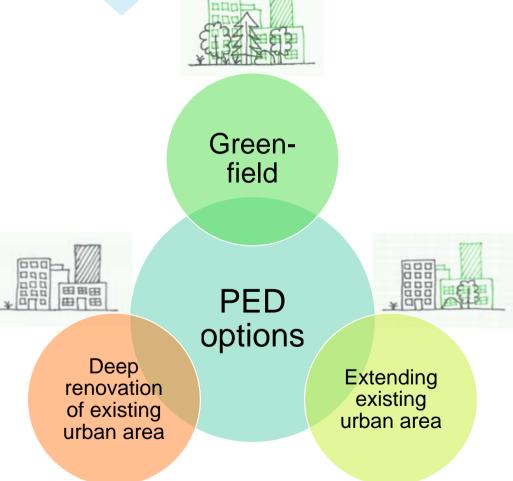

- Engage Stakeholders: tell them the idea, involve them to build the project vision.
- Detail info on PED development, required data, methods...
- Discuss the current situation.
- Formulate scenarios.
- Benchmarking making PED investment decision.

Done in the previous level of visual concept, but can be repeated as new stakeholders and general audience join the cause

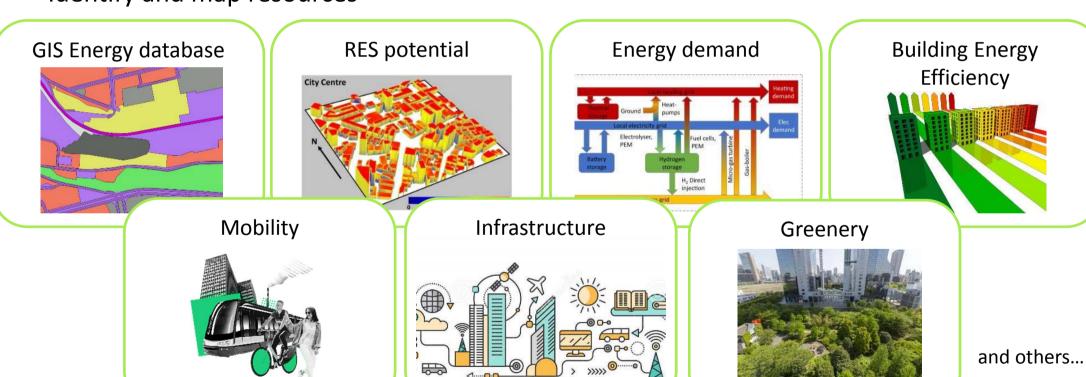


How to implement a PED?

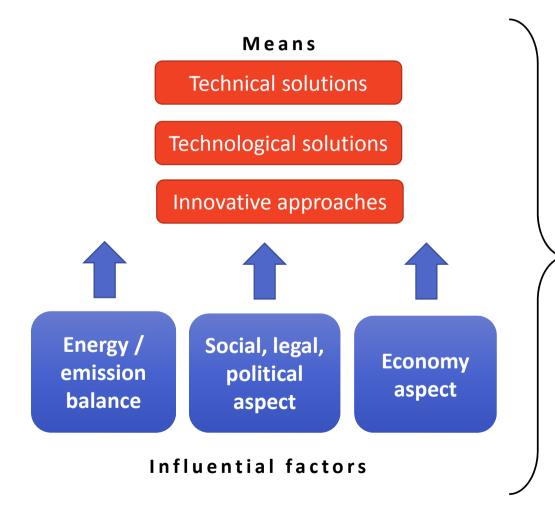
Process map of a PED:


Holistic assessment model:

Pre-selection of the area → FIRST IDEA


- What is the initial status of the area?
- What are the resources available?
- Which stakeholders should be involved?
- Boundaries?

Complexity level	Green field	Extending existing urban area	Renovation of existing area
Implementation	Low	Medium	High
Data collection	Low	Medium	High
Citizen engagement	Low	Medium	High
Ownership/_property	Low	Medium	High
Impact on climate protection	Low	Medium	High
Financing	Low	Medium	High



What is current situation? → DATA COLLECTION

- Identify current state
- Estimate energy demand
- Identify and map resources

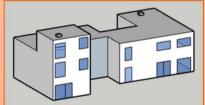
Options available? → HOLISTIC ASSESSMENT

Objectives

Surplus of renewable energy production

GHG emission reduction

Energy efficiency increase


Options available? → HOLISTIC ASSESSMENT

Buildings (Energy Efficiency)	RES potential on-site (Energy Generation)	Energy Management (Energy Flexibility)	Transport and mobility (Energy Flexibility)
Improvement in thermal characteristics of the buildings	electricity	Demand side management	EV
Heat, cold and heated water	heating	storage systems	Decarbonised public transport
Improvement of electricity consumption	cooling	Peer 2 Peer trading	cycling
••••	•••	•••	***

What do I need to do? → MODEL, SCENARIOS

→ Develop building models depending on specifications and structural density

→ Different scenarios for renewable on buildings and in the site

→ Scenarios for energy demand of buildings

High Standards

High Standards

Building Code

→ Economical, social, emissions

Selection of the area? → SOLUTION SELECTION

- Compare scenarios modelled to find the optimal solutions for the PED
- Multi-Criteria Decision Analysis (MCDA)

QUANTITATIVE

PED level

- Total investment cost (CAPEX)
- Investment efficiency (specific cost of saved energy and CO₂)
- Operational costs (OPEX)
- Degree of energy self-sufficiency
 - o Export
 - o Import
- Total energy consumption decrease
- Total GHG emissions decrease
- Total RES energy production

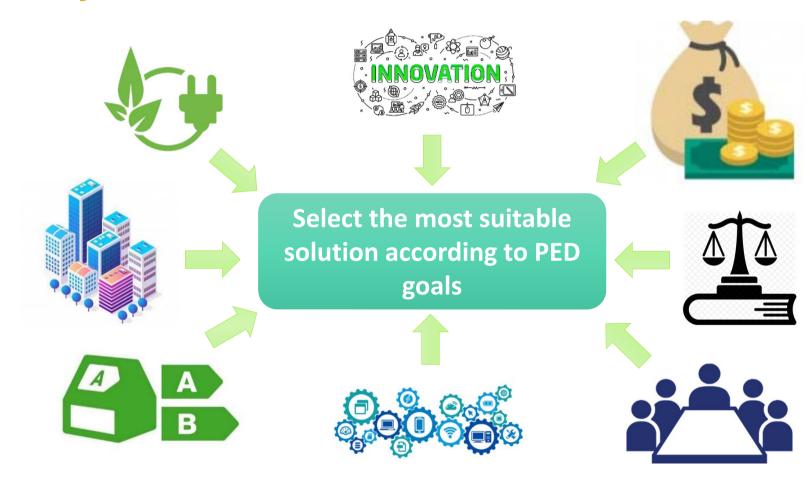
Individual measure level

- Total investment cost (CAPEX)
- Investment efficiency (specific cost of saved energy and CO2)
- Operational costs (OPEX)
- Energy savings (%)
- Energy savings (TJ)
- Total GHG emissions decrease

QUALITATIVE

General criteria

- Urban development
- Improving life quality
- Overall feasibility and demands of PED implementation
- Social acceptance
- Aesthetics, appearance, inclusion in the area
- Legal barriers


Economic assessment

- Payback period
- Available subsidies

Non-energy benefits

- Technical condition of the buildings, quality, life cycle, energy security, energy independence
- Social public health, content, contentment, labour productivity, life standard
- Environmental local and global climate impact
- Other urban development, public acceptance, appearance...

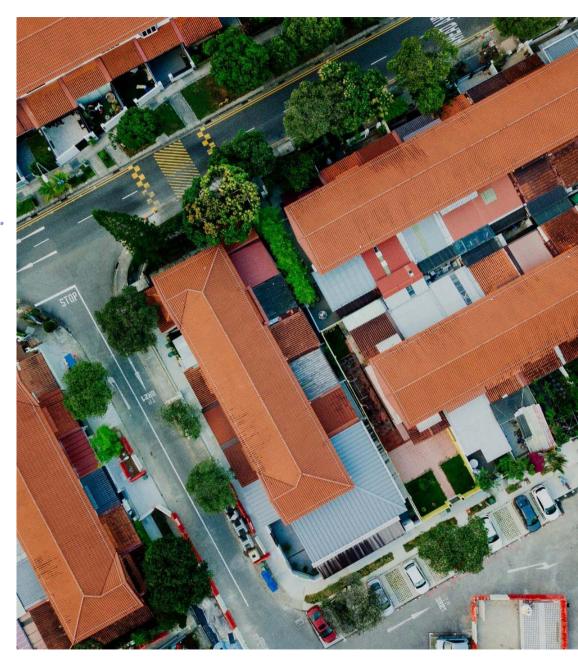
Finally...

- Specify the type and detail of the required data from stakeholder (prepare it based on the preliminary area analysis after the stakeholders "Commitment to PED implementation")
- Explains to the stakeholder what the data is needed for and what kind of outputs can be expected (show examples of data processing and visualization see level 3) (explanation is partly done in part 1 of this level)
- See and check if the data are gathered

Pre-selection of the area

To narrow area for data gathering.

Nevertheless, area can be expanded during the process and based on new facts...



Source: PED project in Kempelenpark in Vienna

Categories/types of data needed:

- Buildings More details in D3.1.
- Infrastructure
- Transport and mobility
- Other municipality objects
- RES potential
- Utilization of energy recovery
- Greenery potential
- Restrictions

Visualize the data needed – show links between the data and the area

BUILDING USAGE

- **⇒**Which kind of building use is expected?
- ⇒Residential buildings
- Non-residential infrastructure of area
 - Kindergarten
 - Schools
 - Nursery building
 - Supermarket
- Which type of buildings are planned? How many floors?

Example for buildings

Source: basemap.at, additional illustration by e7

Use checklists for data gathering

Levels of detail of required data — explain them (higher level = higher data gathering effort, but more precise assessment and vice versa)

Basic level		Advanced level		Expert level		
Main section	Solution / data	Subsection	Solution / data	Indicator / metrics	Solution / data	
indicator / metrics	source	indicator / metrics	source		source	
RES Potential – New	potential production	from RES				
Areas for energy	Summary from					
sources	the advanced level					
		Water energy		<u> </u>		
		Areas for energy sources	Map survey on the rivers, creeks, reservoirs, mere/pond, weirs, water canals, irrigation canals.	Flow (volume, speed), average water level during the year, water gradient	Map of water flows Hydrological data	
				Reservoir / pond outflow during the year	Map of water flows Hydrological data Individual survey (object manager)	

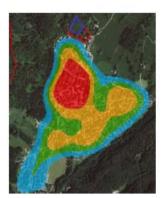
Level of detail of required data

Explain the purpose of data collection

Some data can be estimated — indicated them and agree with the stakeholder on the level of estimation

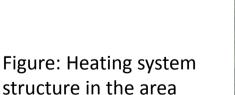
Expert level		Solution		ergy calculation	
Detailed information	How to solve it	Basic solution	Detailed solution	calculation / estimatessment	How to solve it
Free areas for agriculture for biofuels	Map survey Individual survey			forests: nnual production of wood v ypes of wood	several types of
Current areas with biofuels farming + their use	Map survey Individual survey			 → production (t) * calorific value For farming: potential area X yield of potential plant tonnes / year 	Calorific values for types of wood Farming/forestry information
Commercial forests + their use	Map survey Individual survey			potential area X calorific valu cential plant X yield of poter nt potential gross energy per y	information (e.g. efficiency, fuel
Wood processing – sawmills	Map survey Individual survey			(consider that combustion doesn't have 100% effectivity)	esn't

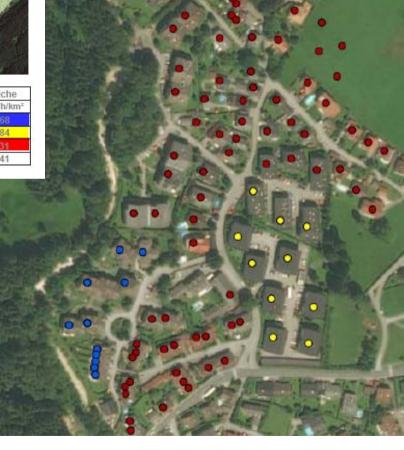
Table: Detailed Check-list and explanation of data for PED assessment


Level 3: Consultation maps

Consultant have to choose appropriate data-visualization approach (GIS maps, professional spatial-energy-analytics software, ...):

- o maps, graphs, diagrams with aspects of the PED area;
- keep the maps simple and in a common visual style, if possible (only the information displayed should differ);
- provide additional important information;
- visualize the current state in the area both stakeholder and consultants need to know with what they can work.
- Based on the consultation maps presented to stakeholders, communicate stakeholder
 preferences and constraints → then you can proceed to scenario creation


Spatial energy analysis


- Existing structure of heating (or other energy) systems in area
 - Type of energy source
 - Installation year of heating system
 - Construction year of building or renovation year
 - Energy demand of building

	W	Diche			
	Gas	ÖI	Andere	SUMME	GWh/km²
Zone A	159	0	423	582	68
Zone B	1.087	0	0	1.087	84
Zone C	1.542	613	558	2.713	31
Summe	2.788	613	981	4.382	41

Source: Integrierter Wärmeplan Salzburg, Alexander Rehoogen

Spatial energy analysis

- Heating map
 - to identify places with higher heat losses
 - to identify places with higher temperature (potential areas for new greenery)

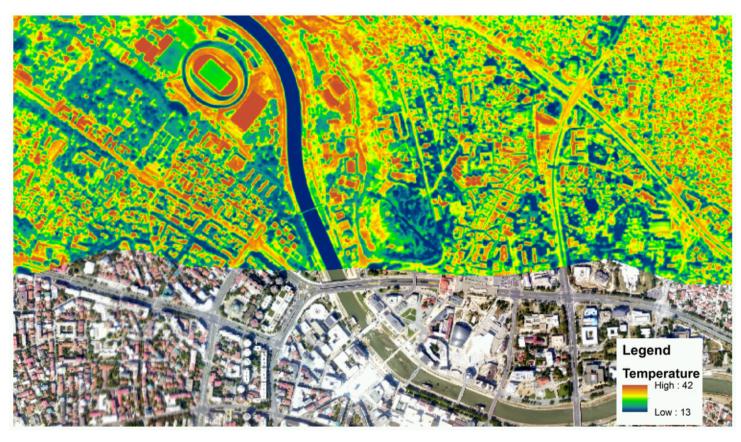


Figure: Skopje's thermal map

Source: Kaplan, Gordana et al. (2020). SKOPJE'S FIRST THERMAL MAP! Are Urban Heat Islands Real? SkopjeLab — City of Skopje Innovation Centre. [results of "ICT for Urban Resilience" Project]. Available from: https://www.innovationlab.mk/skopjes-first-thermal-map-are-urban-heat-islands-real/(accessed 28.3.2022).

Spatial energy analysis

- Solar potential of buildings in the areas (roofs, facades)
- Useful also for activities outside PED project

Figure: The solar potential of Helsinki city buildings (source: https://kartta.hel.fi/3d/solar/#/)

Source: City of Helsinky. 3D models of Helsinki. Available from: https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli. Licenced under CC BY 4.0

Spatial energy analysis

- Summary for heat potential in the area (along with solar gains)
- Overview energy demand of existing building
 - Visualisation in heat map
- Model calculation for energy demand

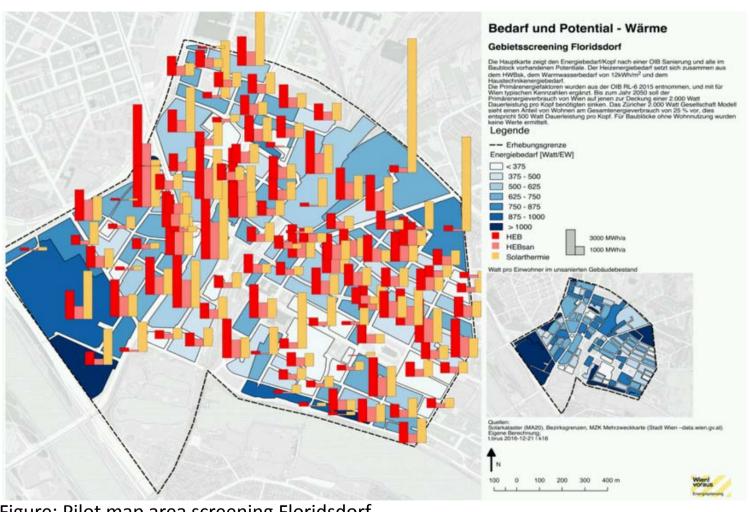


Figure: Pilot map area screening Floridsdorf

Source: project GEL SEP. Available from: https://waermeplanung.at/waermeatlas/

Other visualizations

Sankey diagrams or other specialized calculation tools (e.g., City Energy Analyst or District Energy Concept Adviser...) are useful for presentation of energy balances in the area.

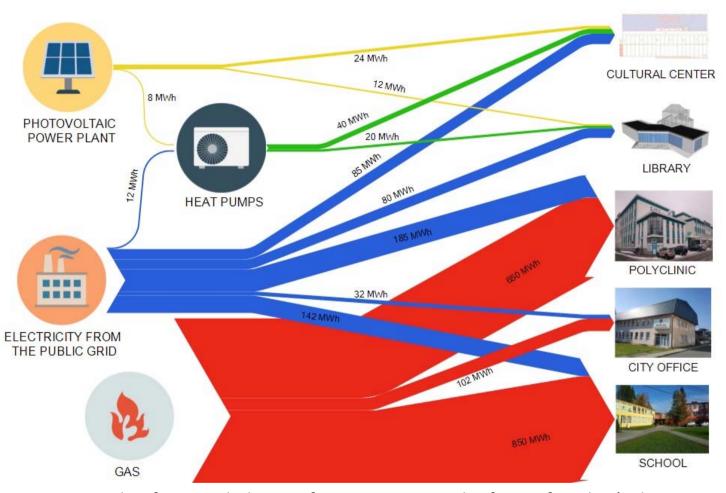


Figure: Example of energy balance of current state in the form of Sankey's diagram

Source: PED-ID project

Level 4: Scenarios

Presentation of feasible scenarios based on the area characteristics

- summary maps with each aspects (and/or each assessed indicator) for each scenario;
- maps in the same visual form as in Level 3 Consultation maps;
- describe main points and their meaning.

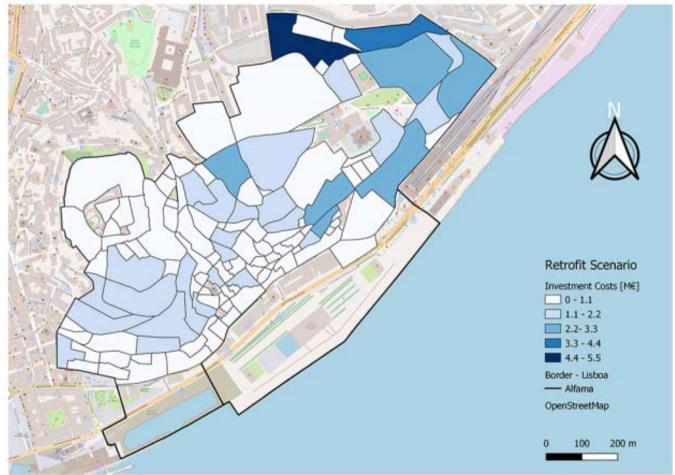


Figure: Exemplar map visualizing a selected layer of the scenario (investment costs)

Image source: Gouveia, João & Seixas, Julia & Palma, Pedro & Duarte, Henrique & Luz, Henrique & Cavadini,

Giovan Battista. (2021). Positive Energy District: A Model for Historic Districts to Address Energy Poverty.

Frontiers in Sustainable Cities. 3. 648473. 10.3389/frsc.2021.648473.

Presentation of feasible scenarios based on the area characteristics:

- describe main aspects of the scenario;
- 3D model is very suitable, primarily for new urban areas.

Figure: Spatial arrangement of proposed model buildings in new PED area

Presentation of feasible scenarios based on the area characteristics:

- presentation is not limited only to maps.
- → use other visual tools too graphs, diagrams, schemes etc.

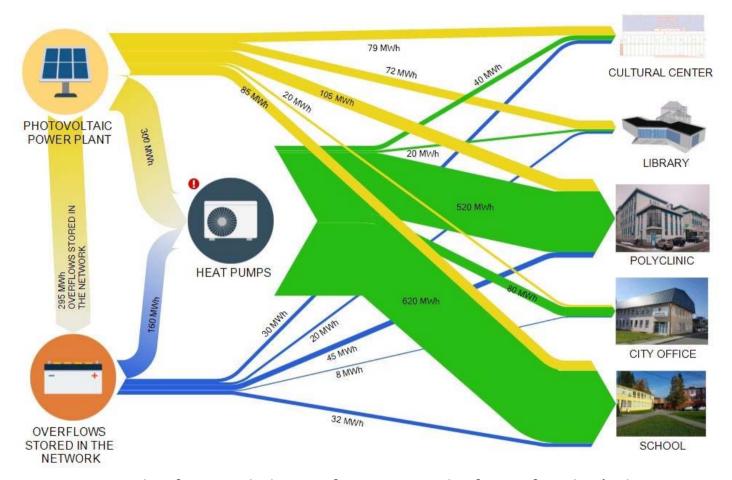
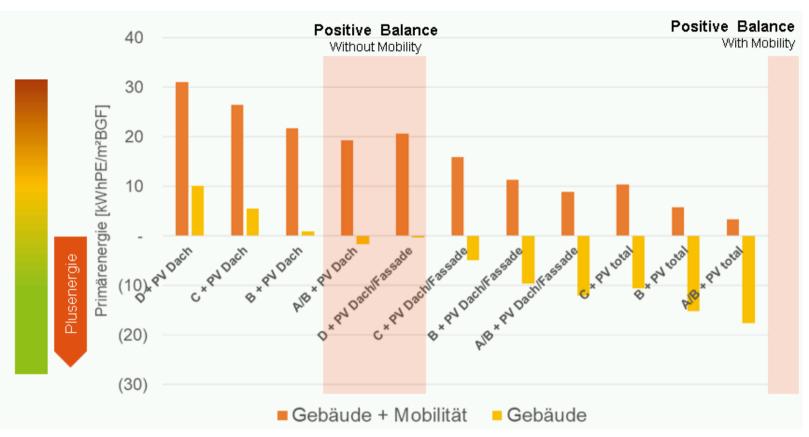



Figure: Example of energy balance of scenario in the form of Sankey's diagram

Source: PED-ID project

Presentation of feasible scenarios based on the area characteristics:

- presentation is not limited only to maps.
- → use other visual tools too graphs, diagrams, schemes etc.

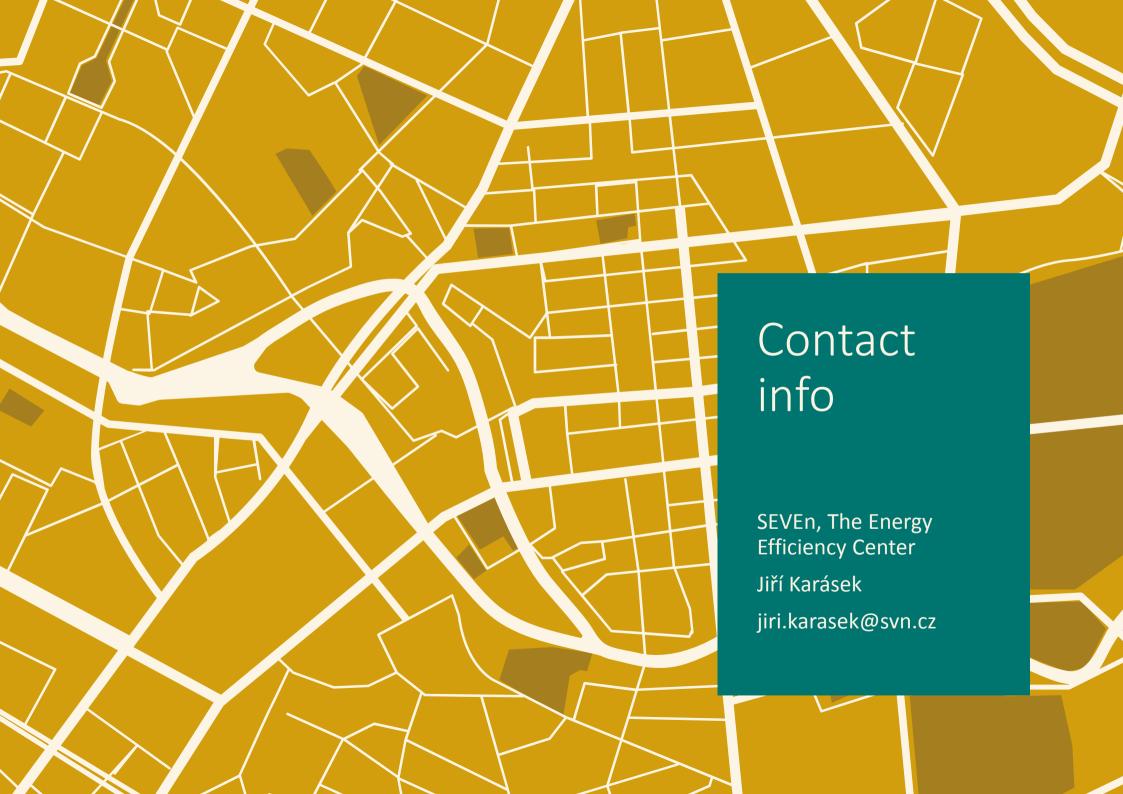

Annahme: Mischung der Wärmeversorgung; 50 % mit Nahwärme, 50% Wärmepumpensysteme

Figure: Scenarios overall – Results of scenario analysis

Presentation of feasible scenarios based on the area characteristics

o summary table with indicators and benchmarks agreed with stakeholders

Quantitative criteria	Scenario 1	Scenario 2	Scenario 3
Positive energy balance reached (√/ X)			
Total primary energy consumption (TJ)			
RES energy generation (TJ)			
Total investment costs (EUR)			
Total operational costs (EUR)			
Qualitative criteria	Scenario 1	Scenario 2	Scenario 3
Life comfort and quality improvement			
Social acceptability			
Score achieved per scenario			

Project Consortium

ENERGY INNOVATION ENGINEERING	e7 Energy Markt Analyse GmbH (e7)
SEVEn/	SEVEn, The Energy Efficiency Center, z.ú. (SEVEn)
Sustainable Innovation	Sustainable Innovation AB (SUST)
พกรา	White Arkitekter AB (WHITE)

Funded by:

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

